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Abstract
An analytical description of the low temperature behaviour of a trapped
interacting Bose gas is presented by using a simple approach that is based
on the principle of the constancy of chemical potentials in equilibrium and
the local-density approximation. Several thermodynamic quantities, which
include the ground-state fraction, chemical potential, total energy, entropy and
heat capacity, are derived analytically. It is shown that the results obtained
here are in excellent agreement with the experimental data and the theoretical
predictions based on the numerical calculation. Meanwhile, by selecting a
suitable variable, the divergent problem existing in some papers is solved.

PACS numbers: 03.75.Fi, 32.80.Pj

1. Introduction

Bose–Einstein condensation (BEC) is one of the most striking consequences of quantum
statistics [1]. The characteristics of BEC may be altered by many factors, which include
the number of atoms, the external potential, the dimensionality of space and the interactions
between the atoms [2–6], etc. The effects due to the interatomic forces are known to be very
small in the normal phase but may become significant when the condensation-induced density
increases at low temperatures. A wide variety of BEC properties, such as the size and shape
and the energy of the condensate cloud as well as the dispersions of the collective excitation,
may be dramatically affected by the interactions [7–11].

The questions of how the interatomic forces affect the low temperature behaviour of Bose
systems have become topics of great interest. Early in the 1950s, Huang, Yang and Lee
et al studied the properties of homogeneous interacting Bose gases based on the two-body
pseudopotential [12–15]. Gross, Pitaevskii and Fetter et al extended the theory of interacting
Bose gases to the inhomogeneous systems [16–19]. Since then many investigations have been
done based on the solution of the Gross–Pitaevskii (GP) equation [20–25].
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In recent years, a simple approach based on the principle of the constancy of chemical
potentials in diffusive equilibrium and the local-density approximation (LDA) has been used
to deal with the problem of trapped interacting Bose gases. For example, Oliva [26, 27]
used it to explore the density profile of trapped imperfect quantum systems. Similar work
was done by Chou et al [28]. The approach was also employed by Shi et al to derive the
thermodynamic properties of a trapped interacting Bose gas [29, 30]. However, the results
in [29] are adequate only for T > TC , where TC is the critical temperature of Bose–Einstein
condensation; some equations in [30], as mentioned by the authors, may become useless near
the critical temperature because of the divergence.

In the present paper, we will continue to use the simple approach mentioned above to
present an analytical description of the low temperature behaviour of a Bose gas trapped in a
harmonic potential with repulsive interatomic interactions. Several thermodynamic quantities,
which include the ground-state fraction, chemical potential, total energy, entropy and heat
capacity, are derived analytically for both the cases of T � TC and T < TC . The corrections
from the interactions are evaluated up to the first power in a/λ, where a is the s-wave scattering
length and λ =

√
2πh̄2/mkBT is the thermal wavelength. Meanwhile, by selecting a suitable

variable, the divergent problem existing in [30] is solved. It is more important that the
analytical results obtained here are in good agreement with the experimental data and the
theoretical predictions based on the numerical calculation.

2. Theoretical evaluation

Let us consider a gas of N repulsively interacting bosons trapped in an anisotropic harmonic
potential

V (r) = 1
2m

(
ω2

xx
2 + ω2

yy
2 + ω2

zz
2
)

(1)

where ωx , ωy and ωz are the angular frequencies of the potential along the x, y, and z directions.
In the presence of an external potential, the spatial distribution of particles is

inhomogeneous. Here we extend the theory of interacting Bose gases proposed by Huang,
Yang and Lee et al [12–15] to the inhomogeneous systems by using the thermodynamic
principle that for a system in diffusive equilibrium, the chemical potentials should be constant
throughout the system. In turn the chemical potential of the system is given by [26, 27]

µ = µ̄[n(r)] + V (r) (2)

where µ̄[n(r)] is the internal chemical potential at r, which is generally the non-local
functional of density profile n(r). If the density varies sufficiently slowly (the condition
is often satisfied [28]), we may treat the internal chemical potential within the LDA. Thus,
µ̄[n(r)] is taken as a local function of n(r), which is of the same form as the chemical potential
of a corresponding homogeneous system of density n(r). For the weak interactions, i.e., the
s-wave scattering length a satisfies a/λ � 1 and a[n(r)]1/3 � 1, µ̄[n(r)] derived by Huang,
Yang and Lee [15] based on the two-body pseudopotential may be written as

µ̄[n(r)] =
{

kBT {ln z̄0[n(r)] + 4aλ2n(r)} [n(r) � nC]

2aλ2kBT [nC + n(r)] [n(r) > nC]
(3)

where nC = ζ(3/2)/λ3 is the critical density of particles at which BEC occurs, ζ(l) =∑∞
i=1 1/il is the Riemann zeta function and z̄0[n(r)] is the non-interacting internal fugacity

at r, which corresponds to the fugacity of a non-interacting homogeneous Bose system with
density n(r). z̄0[n(r)] is related to n(r) through [15]

n(r) = 1

λ3
g3/2{z̄0[n(r)]} (4)
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where gl(x) = ∑∞
i=1 xi/il .

Similarly, under the LDA, the densities of the energy and entropy at r can be, respectively,
expressed as

u(r) = ū[n(r)] + n(r)V (r) (5)

and

s(r) = s̄[n(r)] (6)

where ū[n(r)] and s̄[n(r)] are the local functions of n(r), which are, respectively, given
by [15]

ū[n(r)] =




kBT

{
3

2

1

λ3
g5/2{z̄0[n(r)]} + 2aλ2n2(r)

}
[n(r) � nC)]

kBT

{
3

2

1

λ3
ζ(5/2) + aλ2

[
2n2

C − n(r)nC + n2(r)
]}

[n(r) > nC]

(7)

and

s̄[n(r)] =




kB

{
5

2

1

λ3
g5/2{z̄0[n(r)]} − n(r) ln z̄0(r)

}
[n(r) � nC]

kB

{
5

2

1

λ3
ζ(5/2) + 3aλ2

[
n2

C − n(r)nC

]}
[n(r) > nC].

(8)

2.1. The case of T � TC

When T � TC , all the particles in the system are in the normal states, i.e., n(r) � nC

throughout the space, so µ, u(r) and s(r) are, respectively, expressed as

µ = kBT {ln z̄0[n(r)] + 4aλ2n(r)} + V (r) (9)

u(r) = kBT

{
3

2

1

λ3
g5/2{z̄0[n(r)]} + 2aλ2n2(r)

}
+ n(r)V (r) (10)

and

s(r) = kB

{
5

2

1

λ3
g5/2{z̄0[n(r)]} − n(r) ln z̄0(r)

}
(11)

according to equations (2), (3) and (5)–(8). By using the principle of the constancy of chemical
potentials, the chemical potential of the system can also be written as

µ = kBT {ln z̄0[n(0)] + 4aλ2n(0)}. (12)

If only the terms up to the first power in a/λ are considered, one can derive from equations (4)
and (9)–(12) that

µ = kBT

[
ln z̃ +

4a

λ
g3/2(z̃)

]
(13)

n(r) ≈ 1

λ3

{
g3/2{z̃ exp[−βV (r)]} +

a

λ
{4g3/2(z̃)g1/2{z̃ exp[−βV (r)]}

− 4g3/2{z̃ exp[−βV (r)]}g1/2{z̃ exp[−βV (r)]}}
}

(14)
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u(r) ≈ kBT

λ3

{
3

2
g5/2{z̃ exp[−βV (r)]} + βV (r)g3/2{z̃ exp[−βV (r)]}

+
a

λ

{
6g3/2(z̃)g3/2{z̃ exp[−βV (r)]} − 4g2

3/2{z̃ exp[−βV (r)]}
+ 4βV (r)g3/2(z̃)g1/2{z̃ exp[−βV (r)]}
− 4βV (r)g3/2{z̃ exp[−βV (r)]}g1/2{z̃ exp[−βV (r)]}}} (15)

and

s(r) ≈ kB

λ3

{
5

2
g5/2{z̃ exp[−βV (r)]} + [βV (r) − ln z̃]g3/2{z̃ exp[−βV (r)]}

+
a

λ

{
6g3/2(z̃)g3/2{z̃ exp[−βV (r)]} − 6g2

3/2{z̃ exp[−βV (r)]}
+ 4[βV (r) − ln z̃]g3/2(z̃)g1/2{z̃ exp[−βV (r)]}
− 4[βV (r) − ln z̃]g3/2{z̃ exp[−βV (r)]}g1/2{z̃ exp[−βV (r)]}}} (16)

where β = 1/kBT , z̃ ≡ z̄0[n(0)] is the non-interacting internal fugacity at the centre of the
potential. It is seen from equation (4) that because n(0) � nC for T � TC , z̃ ≡ z̄0[n(0)] � 1
when T � TC .

Equations (14)–(16) present, respectively, the spatial distributions of particles, energy
and entropy. Substituting the expression of V (r) into equations (14)–(16), one can obtain,
respectively, the total number of particles, total energy and entropy of the system as

N =
∫

n(r) dr =
(

kBT

h̄�

)3 {
g3(z̃) +

a

λ
[4g3/2(z̃)g2(z̃) − 4F3/2,1/2,3/2(z̃)]

}
(17)

U =
∫

u(r) dr = kBT

(
kBT

h̄�

)3 {
3g4(z̃) +

a

λ
[12g3/2(z̃)g3(z̃) − 14F3/2,1/2,5/2(z̃)]

}
(18)

and

S =
∫

s(r) dr = kB

(
kBT

h̄�

)3 {
4g4(z̃) − ln z̃g3(z̃) +

a

λ
[12g3/2(z̃)g3(z̃)

− 4 ln z̃g3/2(z̃)g2(z̃) − 18F3/2,1/2,5/2(z̃) + 4 ln z̃F3/2,1/2,3/2(z̃)]
}

(19)

where � ≡ (ωxωyωz)
1/3 and Fδ,ν,η(x) ≡ ∑∞

i,j=1 xi+j /[iδj ν(i + j)η] (x � 1).
The heat capacity at a given external potential and number of particles can be calculated

by using

C = dU

dT
=

(
∂U

∂T

)
z̃

+

(
∂U

∂z̃

)
T

dz̃

dT
(20)

where(
∂U

∂T

)
z̃

= kB

(
kBT

h̄�

)3 {
12g4(z̃) +

a

λ
[54g3/2(z̃)g3(z̃) − 63F3/2,1/2,5/2(z̃)]

}
(21)

(
∂U

∂z̃

)
T

= kBT

z̃

(
kBT

h̄�

)3 {
3g3(z̃) +

a

λ
[12g3/2(z̃)g2(z̃)

+ 12g1/2(z̃)g3(z̃) − 14F3/2,1/2,3/2(z̃)]
}

(22)
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and

dz

dT
= − z̃

T

3g3(z̃) + a
λ

[14g3/2(z̃)g2(z̃) − 14F3/2,1/2,3/2(z̃)]

g2(z̃) + a
λ

[4g3/2(z̃)g1(z̃) + 4g1/2(z̃)g2(z̃) − 4F3/2,1/2,1/2(z̃)]
(23)

can be directly derived from equations (17) and (18).
It should be noted that, unlike the thermodynamic quantities [29, 30] expressed by the

functions of the fugacity z = exp(βµ) = exp{βµ̄[n(0)]} ≡ z̄[n(0)], the expressions of
the thermodynamic quantities derived above are given by the functions of the parameter
z̃ ≡ z̄0[n(0)], so that the divergent difficulty existing in [29, 30] is overcome. The reason is as
follows: for the repulsively interacting Bose system, the fugacity z may be greater than 1, and
consequently, some expressions in [29, 30] may become useless due to the divergence of gl(z)

and Fδ,ν,η(z) when the temperature approaches TC from T > TC . In contrast, because z̃ � 1
when T � TC , equations (17)–(19) and (21) are convergent in the entire region of T � TC .
Although g1/2(z̃), g1(z̃) and F3/2,1/2,1/2(z̃) in equations (22) and (23) will be divergent when
z̃ = 1, it can be proved that the heat capacity given by equation (20) is still convergent.

2.2. The case of T < TC

When T < TC , BEC occurs in the region of n(r) > nC or V (r) < VC , where VC is the
potential at the edge of the condensation region. In the region of V (r) � VC , all the particles
are in the normal state, and consequently, the chemical potential and the densities of particles,
energy and entropy can be still given by equations (4) and (9)–(11), respectively. At the edge
of the condensation region, n(r) = nC , V (r) = VC and z̄0(nC) = 1, so the chemical potential
can be given by

µ = 4aλ2nCkBT + VC. (24)

From equations (4), (9)–(11) and (24), one can derive the densities of particles, energy and
entropy outside the condensation region as

nV (r)�VC
(r) = 1

λ3

{
g3/2(exp{−β[V (r) − VC]}) +

a

λ
{4ζ(3/2)g1/2(exp{−β[V (r) − VC]})

− 4g3/2(exp{−β[V (r) − VC]})g1/2(exp{−β[V (r) − VC]})}
}

(25)

uV (r)�VC
(r) = kBT

λ3

{
3

2
g5/2(exp{−β[V (r) − VC]}) + βV (r)g3/2(exp{−β[V (r) − VC]})

+
a

λ

{
6ζ(3/2)g3/2(exp{−β[V (r) − VC]}) − 4g2

3/2(exp{−β[V (r) − VC]})
+ 4βV (r)ζ(3/2)g1/2(exp{−β[V (r) − VC]})
− 4βV (r)g3/2(exp{−β[V (r) − VC]})g1/2(exp{−β[V (r) − VC]})}} (26)

and

sV (r)�VC
(r)= kB

λ3

{
5

2
g5/2(exp{−β[V (r)− VC]}) + β[V (r)− VC]g3/2(exp{−β[V (r)− VC]})

+
a

λ

{
6ζ(3/2)g3/2(exp{−β[V (r) − VC]}) − 6g2

3/2(exp{−β[V (r) − VC]})
+ 4β[V (r) − VC]ζ(3/2)g1/2(exp{−β[V (r) − VC]}) − 4β[V (r)

−VC]g3/2(exp{−β[V (r) − VC]})g1/2(exp{−β[V (r) − VC]})}} . (27)
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In the condensation region, n(r) > nC and BEC occurs. The chemical potential is now
given by

µ = 2aλ2[n(r) + nC]kBT + V (r) (28)

according to equations (2) and (3). Thus, the density of particles

nV (r)<VC
(r) = nC +

β[VC − V (r)]

2aλ2
(29)

can be derived with the help of equations (24) and (28). It is seen that the density inside
the condensation region consists of the contributions from the normal part with the saturated
density nC and the condensed part with the density

ns(r) = β[VC − V (r)]

2aλ2
. (30)

By using equations (5)–(8) and (29), the densities of energy and entropy inside the
condensation region are found to be

uV (r)<VC
(r) = kBT

λ3

{
3

2
ζ(5/2) +

1

2
ζ(3/2)β[VC + V (r)] +

λβ2
[
V 2

C − V 2(r)
]

4a
+

2aζ 2(3/2)

λ

}

(31)

and

sV (r)<VC
(r) = kB

λ3

{
5

2
ζ(5/2) − 3

2
ζ(3/2)β[VC − V (r)]

}
. (32)

Finally, the total number of particles, ground-state occupation, total energy and entropy
in the case of T < TC are, respectively, given by

N =
∫

V (r)<VC

nV (r)<VC
(r) dr +

∫
V (r)�VC

nV (r)�VC
(r) dr

=
(

kBT

h̄�

)3 {
h3(βVC) +

2ζ(5/2)

π1/2
(βVC)1/2 +

4ζ(3/2)

3π1/2
(βVC)3/2

+
4

15π1/2

(
λ

a

)
(βVC)5/2 +

a

λ
[4ζ(2)ζ(3/2) − 4F3/2,1/2,3/2(1)]

}
(33)

Ns =
∫

V (r)<VC

ns(r) dr = 4

15π1/2

(
λ

a

) (
kBT

h̄�

)3

(βVC)5/2 (34)

U =
∫

V (r)<VC

uV (r)<VC
(r) dr +

∫
V (r)�VC

uV (r)�VC
(r) dr

= kBT

(
kBT

h̄�

)3 {
3h4(βVC) +

6ζ(7/2)

π1/2
(βVC)1/2 +

4ζ(5/2)

π1/2
(βVC)3/2

+
16ζ(3/2)

15π1/2
(βVC)5/2 +

4

21π1/2

(
λ

a

)
(βVC)7/2 +

8ζ 2(3/2)

3π1/2

(a

λ

)
(βVC)3/2

+
a

λ
[12ζ(3/2)ζ(3) − 14F3/2,1/2,5/2(1)]

}
(35)
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and

S =
∫

V (r)<VC

sV (r)<VC
(r) dr +

∫
V (r)�VC

sV (r)�VC
(r) dr

= kB

(
kBT

h̄�

)3 {
4h4(βVC) − (βVC)h3(βVC) +

8ζ(7/2)

π1/2
(βVC)1/2

+
10ζ(5/2)

3π1/2
(βVC)3/2 − 4ζ(3/2)

5π1/2
(βVC)5/2

+
a

λ
[12ζ(3/2)ζ(3) − 18F3/2,1/2,5/2(1)]

}
(36)

where hl(x) ≡ ∑∞
i=1 exp(ix)erfc[(ix)1/2]/il , erfc(x) = (2/π1/2)

∫ ∞
x

exp(−t2) dt is the
complementary error function. It is easy to prove that exp(ix)erfc[(ix)1/2] � 1. Hence,
hl(x) is convergent for l > 1, and, in particular, hl(0) = ζ(l).

The heat capacity in the case of T < TC can be calculated by

C =
(

∂U

∂T

)
VC

+

(
∂U

∂VC

)
T

dVC

dT
(37)

where(
∂U

∂T

)
VC

= kB

(
kBT

h̄�

)3 {
12h4(βVC) − 3(βVC)h3(βVC) +

24ζ(7/2)

π1/2
(βVC)1/2

+
10ζ(5/2)

π1/2
(βVC)3/2 +

8ζ(3/2)

5π1/2
(βVC)5/2 +

8ζ 2(3/2)

π1/2

(a

λ

)
(βVC)3/2

+
a

λ
[54ζ(3/2)ζ(3) − 63F3/2,1/2,5/2(1)]

}
(38)

(
∂U

∂VC

)
T

=
(

kBT

h̄�

)3 {
3h3(βVC) +

6ζ(5/2)

π1/2
(βVC)1/2 +

8ζ(3/2)

3π1/2
(βVC)3/2

+
2

3π1/2

(
λ

a

)
(βVC)5/2 +

4ζ 2(3/2)

π1/2

(a

λ

)
(βVC)1/2

}
(39)

and

dVC

dT
= −VC

T

{
3h3(βVC) −

(
VC

kT

)
h2(βVC) +

6ζ(5/2)

π1/2
(βVC)1/2

+
2ζ(3/2)

π1/2
(βVC)3/2 +

a

λ
[14ζ(2)ζ(3/2)] − 14F3/2,1/2,3/2(1)

}
{
(βVC)h2(βVC) +

2ζ(3/2)

π1/2
(βVC)3/2 +

2

3π1/2

(
λ

a

)
(βVC)5/2

}−1

(40)

can be derived from equations (33) and (35).
It should be noted that the present paper mainly concentrates on the effects of interactions

on the behaviour of an imperfect Bose gas and does not consider the effects of finite number
of particles, that is, all the above results are derived under the thermodynamic limit. It has
been shown that the corrections to the thermodynamic quantities due to finite particles are of
the order of 1/N1/3 at T < TC [31, 32], which can be neglected for a system of large number
of particles.
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3. Discussion

(1) From equations (13) and (18)–(20), it can be clearly seen that, when T � TC , the lowest
order corrections to the thermodynamic quantities due to the interactions are of the order
of a/λ, which is small for the weak interactions. When a = 0 is set, equations (13)
and (18)–(20), respectively, become the expressions of chemical potential, total energy,
entropy and heat capacity of the corresponding non-interacting system at T � TC [33].

(2) It can be derived from equation (34) that

VC = ηkBTC0f
5/2
s (41)

where TC0 = (h̄�/kB)[N/ζ(3)]1/3 is the critical temperature of BEC for the
corresponding non-interacting Bose system, fs = Ns/N is the ground-state fraction,
which can be determined according to equations (33) and (34),

η = 152/5ζ 1/3(3)

2
N1/15

(
a

ah

)2/5

≈ 1.57N1/15

(
a

ah

)2/5

(42)

is a parameter related to the strength of interactions [23, 24] and ah = √
h̄/m� is

the characteristic length of the harmonic potential. Substituting equation (41) into
equations (24) and (35)–(40) and expanding these equations with respect to η, we can
derive the chemical potential, total energy, entropy and heat capacity at T < TC as

µ = kBTC0

[
f 2/5

s η +
16ζ(3/2)

15π1/2ζ(3)
t3/2η5/2

]
(43)

U = NkBTC0

{
3ζ(4)

ζ(3)
t4 +

(
3t3 +

5

7
fs

)
f 2/5

s η +
3ζ(2)

2ζ(3)
t2f 4/5

s η2

+
8ζ(2/3)

15π1/2ζ(3)
t3/2

{[
6 − 7F3/2,1/2,5/2(1)

ζ(3/2)ζ(3)

]
t3 − fs

}
η5/2

}
(44)

S = NkB

{
4ζ(4)

ζ(3)
t3 + 3t2f 2/5

s η +
ζ(2)

ζ(3)
tf 4/5

s η2

+
8ζ(2/3)

5π1/2ζ(3)
t1/2

{[
2 − 3F3/2,1/2,5/2(1)

ζ(3/2)ζ(3)

]
t3 − fs

}
η5/2

}
(45)

and

C = NkB

{
12ζ(4)

ζ(3)
t3 + 6t2f 2/5

s

(
1 − 3

5

t3

fs

)
η +

ζ(2)

ζ(3)
tf 4/5

s

(
1 − 24

5

t3

fs

+
36

25

t6

f 2
s

)
η2

+
4ζ(2/3)

5π1/2ζ(3)
t1/2

{[
20 − 21F3/2,1/2,5/2(1)

ζ(3/2)ζ(3)

]
t3 − fs

}
η5/2

}
. (46)

It is seen that equations (43) and (44) are just the same as the corresponding results in
[23, 24] if fs is replaced approximately by 1 − t3 and only the lowest order corrections
from the interactions are considered.

It is seen from equations (43)–(46) that the lowest order corrections from the
interactions are of the order of η ∼ (a/ah)

2/5 at T < TC . They are much larger
than the corresponding corrections at T � TC , which are linear in a/λ ∼ a/ah. The
result can be physically explained as follows: at low temperatures, the particles are
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Figure 1. The ground-state fraction as a function of temperature. Solid, long-dashed and short-
dashed lines represent our results for an interacting Bose gas, non-interacting Bose gas and
Maxwell–Boltzmann gas, respectively. The solid circles are the experimental data of Ensher et al
[9]. The empty circles are the numerical results of Minguzzi et al [20].

more densely concentrated around the centre of the potential, so the effects due to the
interatomic forces, which is proportional to the density of particles, will become stronger.
When a = 0, i.e., η = 0, the above equations, respectively, become the expressions
of the chemical potential, total energy, entropy and heat capacity of the corresponding
non-interacting system at T < TC [33].

(3) According to equations (13), (17)–(24) and (33)–(40), one can expound the dependences of
fs , µ, U, S and C on the temperature in detail, as shown in figures 1–5, respectively, where
the parameters given experimentally by Ensher et al [9] are taken, i.e., ωz = 2343.63 (s−1),
ωx = ωy = ωz/

√
8, m = 87 (au), N = 40 000, a = 110aB and aB is the Bohr radius.

Figure 1 shows the curves of the ground-state fraction fs varying with the scaled
temperature T/TC0. It is seen that both the ground-state fraction and the critical temperature
decrease significantly with respect to the values predicted by the non-interacting theory. The
result is as expected, since the repulsive forces between the particles may weaken the effect
of the external potential in concentrating the particles around the centre and make BEC more
difficult. By setting z̃ = 1 in equation (17) or VC = 0 in equation (33), one can find the critical
temperature

TC ≈ TC0

{
1 − 4a

3λC0

[
ζ(2)ζ(3/2)

ζ(3)
− F3/2,1/2,3/2(1)

ζ(3)

]}
(47)

where λC0 =
√

2πh̄2/mkBTC0. Equation (47) coincides with the result in [21]. For the
parameters given above, TC ≈ 0.94TC0. The value is in good agreement with the experimental
data [9] and numerical results [20–22].

Figure 2 presents the dependence of the chemical potential on temperature, which is
found to agree well with the numerical result obtained by Giorgini et al [21, 22]. It is seen
that, unlike the non-interacting Bose system, for which µ = 0 when T � TC0, the chemical
potential of the repulsively interacting system below the critical temperature is greater than
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Figure 2. The chemical potential as a function of temperature. Solid and dashed lines represent
our results for an interacting Bose gas and non-interacting Bose gas, respectively. The empty
circles are the numerical results of Giorgini et al [22].
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Figure 3. The total energy and release energy (inset) as a function of temperature. Solid, long-
dashed and short-dashed lines represent our results for an interacting Bose gas, non-interacting
Bose gas and Maxwell–Boltzmann gas, respectively. The solid circles are the experimental data
of Ensher et al [9]. The empty circles are the numerical results of Minguzzi et al [20].

zero. One can estimate from equation (43) that when T → 0,

µ = ηkTC0 = h̄�

2

(
15Na

ah

)2/5

. (48)

The result is consistent with that of the Ginzburg–Pitaevskii–Gross mean field theory [34].
Figure 3 gives the total energy as a function of temperature. It is indicated that the

interatomic forces substantially increase the total energy of the system below the critical
temperature. The ground-state energy can be obtained from equation (44) as

U = 5

7
ηkTC0 = 5h̄�

14

(
15Na

ah

)2/5

. (49)

It is in accordance with the result in [34]. The inset of figure 3 gives the curve of the release
energy UR (defined as the energy of the system after the external potential has been switched
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Figure 4. The entropy as a function of temperature. Solid and dashed lines represent our results
for an interacting Bose gas and non-interacting Bose gas, respectively.
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Figure 5. The heat capacity and release heat capacity (inset) as a function of temperature. Solid,
long-dashed and short-dashed lines represent our results for an interacting Bose gas, non-interacting
Bose gas and Maxwell–Boltzmann gas, respectively. The empty circles are the numerical results
of Minguzzi et al [20].

off [20]) versus temperature, which is compared with the experimental data obtained by Ensher
et al [9] and the result of the two-fluid mean-field model established by Minguzzi et al [20].
It is seen that the result agrees well with the experimental data and almost reproduces the
numerical result obtained by Minguzzi et al.

Figure 4 shows the curve of the entropy varying with temperature, which is compared
with the prediction of non-interacting theory. As expected, the effects of interactions on the
entropy are significant when T < TC , but very small when T � TC .

Finally, the curves of the heat capacities versus temperature are plotted in figure 5. It
is interesting to note that in the region of T < TC , the heat capacity does not increase
monotonically with T, like that of the non-interacting system. After reaching the maximum
at a certain temperature Tm near TC , the value of C decreases quickly when T approaches TC

from Tm. The inset of figure 5 shows the curve of the release heat capacity CR (defined as
CR = ∂UR/∂T ) versus temperature, which is compared with the result obtained by Minguzzi
et al [20]. Good agreement can be clearly seen.
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4. Conclusions

We have obtained an analytical description for the low temperature behaviour of a trapped
interacting Bose gas by using the principle of the constancy of chemical potentials in
equilibrium and the local-density approximation. The expressions of several thermodynamic
quantities are derived, in which the corrections due to the interactions between the particles
are given explicitly. The divergent problem existing in some papers is overcome. It is more
important that the analytical results derived by a conceptually simple method are in good
agreement with the experimental data and the numerical predictions, and many significant
conclusions in the literature are included in the present paper.
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